Think Python Exercise 4.1

  1. 画一个执行 circle(bob,radius) 时的堆栈图(stack diagram),说明程序的各个状态。你可以手动进行计算,也可以在代码中加入打印语句。
  2. “重构”一节中给出的 arc 函数版本并不太精确,因为圆形的线性近似(linear approximation)永远处在真正的圆形之外。因此,Turtle 总是和正确的终点相差几个像素。我的答案中展示了降低这个错误影响的一种方法。阅读其中的代码,看看你是否能够理解。如果你画一个堆栈图的话,你可能会更容易明白背后的原理。

先放上代码,得到代码过程可以看Think Python Exercise 4.0

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
import turtle
import math

def polyline(t,length,n,angle):
	for i in range(n):
		t.fd(length)
		t.lt(angle)

def arc(t,r,angle):
    """angle取值范围是1~360,度数。
    画出圆的一部分。
    """
    arc_length = 2 * math.pi * r * angle / 360
    
    n = int(arc_length / 3) + 1
    step_length = arc_length / n
    step_angle = angle / n
    polyline(t,step_length,n,step_angle)

def circle(t,r):
	arc(t,r,360) #circle是arc函数在角度angle取360时的特例

bob = turtle.Turtle()

circle(bob,100)

turtle.mainloop()

我画的堆栈图如下:

来看看作者重构的代码:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
"""This module contains a code example related to

Think Python, 2nd Edition
by Allen Downey
http://thinkpython2.com

Copyright 2015 Allen Downey

License: http://creativecommons.org/licenses/by/4.0/
"""

from __future__ import print_function, division

import math
import turtle


def square(t, length):
    """Draws a square with sides of the given length.
    Returns the Turtle to the starting position and location.
    """
    for i in range(4):
        t.fd(length)
        t.lt(90)


def polyline(t, n, length, angle):
    """Draws n line segments.
    t: Turtle object
    n: number of line segments
    length: length of each segment
    angle: degrees between segments
    """
    for i in range(n):
        t.fd(length)
        t.lt(angle)


def polygon(t, n, length):
    """Draws a polygon with n sides.
    t: Turtle
    n: number of sides
    length: length of each side.
    """
    angle = 360.0/n
    polyline(t, n, length, angle)


def arc(t, r, angle):
    """Draws an arc with the given radius and angle.
    t: Turtle
    r: radius
    angle: angle subtended by the arc, in degrees
    """
    arc_length = 2 * math.pi * r * abs(angle) / 360 #角度变为绝对值
    n = int(arc_length / 4) + 3 #之前是int(arc_length / 3) + 1
    step_length = arc_length / n
    step_angle = float(angle) / n

    # making a slight left turn before starting reduces
    # the error caused by the linear approximation of the arc
    # 在开始前稍微左转可以减少由直线逼近弧线所引起的误差
    t.lt(step_angle/2)
    polyline(t, n, step_length, step_angle)
    t.rt(step_angle/2)


def circle(t, r):
    """Draws a circle with the given radius.
    t: Turtle
    r: radius
    """
    arc(t, r, 360)


# the following condition checks whether we are
# running as a script, in which case run the test code,
# or being imported, in which case don't.

if __name__ == '__main__':
    bob = turtle.Turtle()

    # draw a circle centered on the origin
    radius = 100
    bob.pu() #抬笔
    bob.fd(radius)
    bob.lt(90)
    bob.pd() #落笔
    circle(bob, radius)
    # wait for the user to close the window
    turtle.mainloop()

我画的堆栈图:

代码主要的变化在于,作者换了种方式来计算用于近似圆的多边形的边数,所需边数更少了;在开始画画之前,让turtle稍微左转(多边形外角角度的一半),减少由直线逼近弧线所引起的误差。

目前就分析出这么多。